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Complex Organizational Metric

for Programmatic Risk Environments
(COMPR#_,)

EXECUTIVE SUMMARY

Phase II of the development of a complexity measure for technologically risky programs is

presented. This effort, taking place from April-October 1997, focuses on the utilization of

a model, COMPRI_, which quantifies this metric. The sensitivity of this metric to schedule

duration, the determination of relevant programmatic benchmarks, and performance

monitoring with COMPRE are also addressed.

Complexity Metric and Payoff

The proposed programmatic complexity metric, "normalized" risk, is the ratio of total

programmatic risk to total programmatic return-on-investment. Total return-on-

investment is the budget-weighted average of the payoffs for the individual subsystems of

the program. These payoffs are functions of the degree of maturity for the various

technologies of the subsystems of interest. The designations for these technological

maturities are by NASA TechnoloAny Readiness Levels (TRL's). Payoffs are then

quantitatively determined by nonlinear "basis" functions, which are mapped back to the
TRL's.

Programmatic Risk

Total programmatic risk is determined by assessing the degree to which subsystems work

with or against each other. Connectivity is determined by the programmatic architecture.

Two subsystems which connect to each other, developmentally, each possess technologies

which must be integrated. Risk is measured by the degree to which these technologies

correlate, as well as the technological maturity. Furthermore, multiple organizations may

be responsible for integrating subsystems, a significant risk factor. How the budget is

allocated across these subsystems is also a major risk factor, since heavy investments in

immature technologies, with potentially high returns, also carry significantly more risk

than equivalent investments in more mature technologies. Finally, programmatic schedule



is a primaryrisk contributor. Longer schedulesallow more time for maturingdifficult
technologies,but alsoincreasethepotentialfor showstoppersandunproductiveinertia.

Major Conclusions

1. As a complexity metric, normalized risk significantly reduces the COMPRI_ model

sensitivity to schedule duration.

2. A nonlinear regression between total programmatic cost and normalized risk proves

highly significant statistically. Thus, normalized risk may prove to be a very effective

benchmark for the complexity and cost of a given program - throughout its developmental

stages.

3. A good benchmark for programs of excellence is a normalized risk of 1.0.

Approximately 15% of all programs would be expected to have normalized risks less than

1.0.

4. Effective programmatic benchmarks may also be derived based on total program cost.

For example, a fair benchmark for a $500M program would be a normalized risk of

approximately 1.7.

5. The use of uncertainty analysis may be effective in providing quantitative clues to

programmatic surprises.
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1.0 INTRODUCTION

This report addresses the second phase of development for a complex organizational

metric for programmatic _risk environments, COMPRE. A number of issues concerning

model utilization are provided in this report. These include the concept of "normalized"

risk as a prescriptive measure for complex measures, the use of uncertainty analysis in

predicting programmatic "sui'prises", and the use of principal components analysis to

determine programmatic stability.

An issue concerning the sensitivity of COMPP_ to schedule duration is also addressed by

using normalized risk and marginal timeframe analysis. Also, the correlation between the

normalized risk complexity measure and total programmatic cost is developed, leading to

possible benchmarks for programs of various sizes. Finally, performance monitoring is

addressed using innovative statistical quality control techniques.

2.0 STATISTICAL ACCELERATION OF COMPRI_ VALIDATION

This section includes all changes made to the model as the result of the IV&V effort. It

also includes statistical calculations necessary for programmatic correlation to the model.

2.1 COMPRE" BASIS FUNCTIONS

This section covers an analysis of the COMPRI_ basis functions described in the January

1997 report.

2.1.1 CONVERSION TO NASA TECHNOLOGY READINESS LEVELS

This conversion was performed to make COMPRE inputs consistent with NASA

technology Readiness Levels (TRL's). The new equations are provided in Appendix A of

this report.

2.1.2 SENSITIVITY PARAMETERS

This section presents an overview of the sensitivity of COMPRI_ results to "shape" and

"scale" parameters in the basis functions. Figure 2.1.2-1 shows a representative sensitivity

for the scale parameter of a system with TRL equal to 5. Note that the technological risk

is increasing with decreasing TRL levels only between the values of 0.2 and 5. This result

provides guidelines for logical values that such a scale parameter may take. Sensitivity

analyses were performed for all shape and scale parameters for all basis functions.

Additional details are provided in Appendix A.
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Figure 2.1.2-1. Sensitivity Analysis for TRL5 Basis Function Scale Parameter

2.2 COMPRF: Uncertainty Analysis

This section provides an overview of uncertainty analyses using COMPRE. Additional

details are provided in Appendix B of this report. Uncertainty analysis is used to

determine the robustness, or lack thereof, of the risk and normalized risk metrics present

in COMPRI_ for a given system.

A sample COMPRE risk analysis is shown in Figure 2.2-1 for the Hubble Space Telescope

- Optical Telescope Assembly (HST-OTA). The variability of the OTA components is

shown in this figure. The variability is defined as the degree to which the component

contributes to the overall variance, or risk, of the OTA system. Percentages add up to

greater than 100% due to combined interaction effects of the various components. That

is, because two components interact with one another, the risk contribution of that

interaction is attributed to both components. Note that the Optical Control Sub-Assembly

and Structure/Mechanism have the highest contributions to overall risk, while the Optics

and Fine Guidance components contribute the least.

Figure 2.2-2 shows the accompanying cost uncertainty analysis for the HST-OTA. Here

the degree to which a component's cost may pose an unexpected surprise is measured by

its relative variability. In other words, given a component's inherent variability, how much

can it be expected to change, relative to itself, due to uncertainty in the projected cost of

the component. The results show a near complete reversal of the risk analysis, with Fine

Guidance, Optics, and Electronics leading the list of most likely surprises, from a cost

standpoint. This result is in keeping with historical and logical program consequences, in



which the subsystemconsideredleast risky is often the one that ends up surprising the

most, and vice versa.

Figure 2.2-3 provides the technology uncertainty analysis, with Fine Guidance,

Electronics, and Optics being the most likely surprises from a technological standpoint. In

case of point, Fine Guidance was the largest headache for the HST-OTA development.

70

o
"_e0
J_

i.

t_e0-
O
tJ
t--
Ill

=40
m

>,
,,a

----30
e_
t_

m
i.

e'-

e-

O

E-lo
0

t_

m m

/ H
un nu nu nu J nu

Op. Owt Sub. SI;u:t./Mech Pmay Mrrcr See

OI'AC_

!1

RneQ.ida'ce

Figure 2. 2-1. Risk Analysis for HST-OTA



OTA_

Figure 2. 2-2. Cost Uncertainty Analysis for HST-OTA

N-eOJc_rue

OrA_

Q_.ort _a

Figure 2. 2-3. Technology Uncertainty Analysis for HST-OTA

8



2.3 COMPR_: Complexity Metric: Normalized Risk

Up to this point, we have dealt with the total programmatic risk, as quantified by

COMPRE. Now, we introduce the concept of normalized risk. Normalized risk is defined

as the ratio of total programmatic risk to total programmatic payoff. Certainly, we wish

this metric to be as small as possible, since one would desire low risk and high payoff (to

the degree it can be achieved) for any system developed. Thus, normalized risk represents

the amount of programmatic risk accepted for each unit of programmatic reward. A close

relative of normalized risk is the Sharpe Ratio of financial portfolio synthesis.

Figure 2.3-1 shows the relationship between schedule duration and normalized risk for the

HST-OTA. This particular relationship is very typical. Note that the growth in

normalized risk is roughly equal to the square root of the growth in schedule duration.

Thus, normalized risk is very well bounded by schedule duration, and this sensitivity to
schedule duration would not tend to be characterized as excessive.

Figure 2.3-2 shows how risk and normalized risk decrease over time as the HST-OTA

schedule is expended. Note how slowly absolute risk degrades, while normalized risk

decreases in a fairly linear fashion. The technical details of marginal timeframe analysis are

provided in Appendix C.
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2.4 Relationship Between Normalized Risk and Total Programmatic Cost

COMPRt_ does not incorporate total programmatic cost directly. Budget allocations for

subsystems and components are as a proportion of total programmatic cost, but that total

cost is not used. The reason for this is that COMPRI_ must be flexible enough to measure

system complexity independent of cost. If, in fact, complexity tends to increase with cost,

COMPRI_ is not inherently aware of this. In fact, this reasoning presupposes that a large

program could (but not necessarily will) be run as effectively as a small program.

Conversely, a large, costly program need not be more complex that a small, cheap one, as
far as COMPRI_ is concerned.

Therefore, it would be natural to test the correlation between COMPRt_ complexity, as

measured by normalized risk, and total programmatic cost. In fact, this was done.

Figure 2.4-1 shows the total programmatic costs and COMPRI_ normalized risks (as

provided by SAIC) for 18 developmental programs. The costs are provided in decreasing

order, but notice the general tendency of normalized risk to decrease with cost, the major

exception being HST. This graph leads one to consider the possible correlation between

cost and normalized risk.

10
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A nonlinear (geometric) regression between total programmatic cost and normalized risk

is given as:

cr = 0.6970C0.145 l
2

C = 12.0340(-_) 6.1918

R=0.91

a = 2.3E - 07

where

a = COMPRE risk (% standard deviation),

_. = COMPP_ payoff,

C = total programmatic cost ($M 1996),

R = the correlation between normalized risk and total programmatic cost,

o_ = the probability of concluding the regression as significant statistically when it is not.

While the correlation of 0.91 indicates a good regression, it is the probability, 2.3E-07,

which indicates that this correlation is not pure chance, given the number of data points

and degrees of freedom. Figure 2.4-2 shows the actual and predicted values for

11



normalized risk as a function of cost for the 18 programs. With the exception of HST,

this is clearly an excellent fit, indicating that COMPRI_ has done a suitable job of

capturing the system complexity in terms of normalized risk, as it relates to programmatic

cost.
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Figure 2.4-2. Actual and Predicted Normalized Risk as Function of Cost

3.0 STATISTICAL ACCELERATION OF COMPRE QUALITY
MONITORING

This section provides the basis for monitoring the deviations from expectation and

experience in a real-time, accelerated manner. It is the feedback process that

simultaneously measures programmatic performance, while making recommendations for

corrective action, when necessary. Technical details are provided in Appendix D.

3.1 COMPRE: HYPOTHESIS TESTS

In order to monitor decision quality for recommendation purposes, measured conclusions

must be capable of being drawn. To draw these conclusions, statistical hypothesis tests

must be formulated. One such test was described in the Jan. 1997 Final Report. This test

12



is determined by the null hypothesis, which is that the actual normalized risk for the

program in question does not exceed the relevant normalized risk benchmark. The

determination of such a benchmark is described in the next section.

3.2 BENCHMARKS AND TESTING PARAMETERS

Performance benchmarks and decision quality test parameters must be specified for the

hypothesis tests. Test parameters- incl_te Type _ and II- err-or rate_ which are the_

probabilities of drawing erroneous conclusions concerning program management

performance relative to appropriate benchmarks.

Figure 3.2-1 shows the distribution of actual normalized risks for the 18 programs. Note

that approximately 45% of the 18 programs have normalized risks below 1.25, while 90%

are below 2.25. This shows the sensitivity displayed in this complexity metric, where

small differences in normalized risk mean large differences in performance and cost.

Figure 3.2-2 shows the distribution of resampled normalized risks based on the 18

programs for 1000 resamples. A resample is a statistical re-simulation of all 18 programs,

with the arithmetic mean serving as the resample value. Note that, unlike the histogram of

actual normalized risks, approximately 85% of the 1000 resamples have normalized risks

below 1.25, with roughly 15% below 1.0. Thus, a normalized risk of 1.0 might serve as

an effective benchmark for excellence in programs.
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3.3 STATISTICAL ACCELERATORS

This section describes the application of statistical accelerators to maximize productive

feedback on performance monitoring.

3.4 STATISTICAL CONCLUSION AND RECOMMENDATION FOR

CORRECTIVE A CTION

Appendix D describes the technical details for achieving conclusiveness using

programmatic benchmarks to perform performance monitoring.

Figure 3.4-1 provides an example of a quality decision being made. In this example, a

rejection of the null hypothesis means that the program is underperforming its benchmark.

That is, there is high confidence that the actual normalized risk is greater than the

benchmark, which is undesirable.

Figure 3.4-2 shows the required number of COMPRI_ evaluations to draw a statistically

significant conclusion for various values of the actual (unknown) normalized risk.

Typically, 12-15 evaluations are required. This result may or may not be acceptable,

depending on the frequency of data updates and the length of the program.

14



Drawing a Quality Conclusion Using Complexity Analysis
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4.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. As a complexity metric, normalized risk significantly reduces the COMPRt_ model

sensitivity to schedule duration.

2. A nonlinear regression between total programmatic cost and normalized risk proves

highly significant statistically. Thus, normalized risk may prove to be a very effective

benchmark for the complexity and cost of a given program - throughout its developmental

stages.

3. A good benchmark for programs of excellence is a normalized risk of 1.0.

Approximately 15% of all programs would be expected to have normalized risks less than
1.0.

4. Effective programmatic benchmarks may also be derived based on total program cost.

For example, a fair benchmark for a $500M program would be a normalized risk of

approximately 1.7.

5. The use of uncertainty analysis may be effective in providing quantitative clues to

programmatic surprises.

Recommendations

1. Use COMPRI_ normalized risk as a systemic complexity metric.

2. Set benchmark normalized risk values in the vicinity of 1.0, with possible allowance for

program size.

3. Use relative uncertainty analysis for the prediction of programmatic surprises.

4. Perform programmatic performance monitoring using statistical acceleration of
COMPR]_ normalized risk.
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APPENDIX A: COMPRI_ Basis Functions

The general formulas for evaluating the technological maturities and programmatic risk

are provided in Section 4.0 of the January 1997 report, with the overall methodology

provided in Section 5.0 of the same report. This appendix provides the specific basis

function manipulations to achieve system (and subsystem) level results.

The nine basis functions, corresponding to the nine NASA Technological Readiness

Levels (TRL's), are given by:

rt(t)=e'

t 2 3e _
r2(t ) = --+--

4 4

12 e t

r3(t ) : --+--
2 2

3t 2 e t
r4(t ) = --+--

4 4

r_(t) : t z

t 3t 2
r6(t) = - + --

4 4

t t z
r7(t) = - + --

2 2

3t t _
q(t) = --+--

4 4

r9(t) = t

Note that the basis functions for TRL's of 2, 3, 4, 6, 7, and 8 are linear combinations of

the basis functions for TRL's of 1, 5, and 9. The expected technological payoff for the

standard basis functions may be found by integration to be:

e t -1

E[rt(t)] -
t

t 2
E[r_(t)] = --

3

t
E[rg(t)] = _

2
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The other basis function

expectations:

expectations may be calculated as linear functions of these

E[r_(t)]= _ +---4 4

et ,cgO)_t ]+
E[r3(t)]=-- 2 2

E[r,(t)]=-_+_

= 4

E[rT(t)]=_+_

E[r,(t)]= 4

The standard basis covariances amongst themselves may be found through integration as:

2c 1 1 1 2e t - 1

C_,(t)=e (--_t--_) 2t -'-t'

4t 4
() ---C_ t = 45

t z

C_(t) e"gt 2 2 t_ 2.= (,"_- +t )+ 3 t

, 1 1 1 1

c,9(t)---e (_--s)+_ +-t

t _

C,9(t)=_

Finally, covariances amongst the other (nonstandard) basis functions are evaluated as

linear combinations of the standard basis covariances, as given below,
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Cn(t ) _ 3C,,(t) + C,,(t)
4 4

C,_(t) = C,,(O _ C,,(t)
2 2

c,.(O - c,,(O + 3c,.(t)
4 4

c,_(O - 3c,,(t) ) c,9(0
4 4

c,.(t) c,.(t)
c,7 (t) - )

2 2

C,,(t) - C,,(t) )- 3C,9(t )
4 4

6C,, (t) C55(t)
C2z(t)_ 9C,,(t) )- t-

16 16 16

C23(t) _ 3C,_(t) ) 4C,,(t) + C,,(t)
8 8 8

G.(t) - 3c,,(0 _ loc,.(0 ) 3G,(t)
16 16 16

3C,, (t) C,,(t)
G.(O - I-

4 4

C26(/) _ 9C,,(t) _ 3C,9(t ) + 3C5,(t ) + C'sg(/)
16 16 16 16

QT(t ) _ 3C,,(t) ) 3C19(t ) ) C_(t) + C59(/)
8 8 8 8

9C,9(t ) G,(t) 3C,,(t)c_,(t) - 3c,.(t) + _ -___
16 16 16 16

3C,9(t1 C,,(t)
G_(O - )

4 4
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4 4 4

8 8

q,(,__-_ +c,,___q,_8
2 2.

c_,(o=_+_ 3c,,(o
8 8 +"--:_+C_9-_ (t)

8
8

4 4 4
4

8 8 8

c,,c,>=_+_ 8
2 2

c__o--q,£_'_6q,_o
16 + '"'_:-_-+ _

16 16

c,,co=q,_do_o+_
4 4

c_e.) 3q, e.)

16 I6 _---'_"_
16

8 8 8

c,,,(0 = _+ 3q,(O 8
I6

4 4

4
4

c,,(-,>__+_
2 2

4 4

22



6C_9 (t) C99 (t)
C66(t) _ 9C_,(t) +-- )

16 16 16

C67(t) _ 3C.(t) 4 4C_9(t ) _ C99(t)
8 8 8

C6,(t) _ 3C.(t) _ 10C59(t ) _ 3C99(t)
16 16

3C. (t) C99 (t)
c_9 (t) -

4 4

16

C77(t) - G,(t) + 2C59(t) q C99 (t)
4 4 4

CT.(t) - q,(t) _ 4G9(t) F 3C99(t)
8 8 8

G9(t) c.(t)
C79 (t) -- -I

2 2

G, (t) - G,(t) + 6G. (t)
16 16

G9(t) - C,9(t) _ 3C99 (t)
4 4

16

Note that the limiting values for all covariances as t approaches 0 are all equal to 0. In

some cases, L'H6pital's Rule is employed to verify this.

Generally Weighted Basis Functions with Shape and Scale Parameters

The nine basis functions, corresponding to the nine NASA

Levels (TRL's), are given by:

rI (t) = ale B',

r2,(t ) = wnr _(t) + w2,rs(t),w n + w2, = 1

r_(t)

r,(t)

r,(t)

r_(t)

r,(t)

r,(t)

r,(t)

= w3,r_(t ) + w35rs(t),w3, + w3_ = 1

= w41r _(t) + w4_r_(t),w4_ + w45 = 1

= 0_5/2

= w6_r_(t) + w69r 9 (t), w6, + w69 = 1

= w7_r,(t ) + w79r 9(t),w7, + w79 = l

= w,_rs(t ) + W,gr 9 (t),w,_ + ws9 = 1

: _91

Technological Readiness
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Note thatthebasisfunctionsfor TRL's of 2, 3, 4, 6, 7, and8arecombinationsof thebasis
functionsfor TRL's of 1, 5, and 9. The expectedtechnologicalpayoff for the standard
basisfunctionsmaybefoundbyintegrationto be:

E[G (t)] - a, (.epl' 1)

fl,t

E[r_ (t)] - °t't2
3

E[r 9 (t)] = ag----_t
2

The other basis function expectations may be calculated as linear functions of these

expectations:

E[r2(t)] = w2,E[r,(t)] + w_,E[r,(t)]

E[r s (t)] = w,,E[r 5(t)] + wsgE[r 9(t)]

The standard basis covariances amongst themselves may be found through integration as:

. 2 2flit

a_ .2eP" -e2#" - I a I e -1)
C,,(t) = --_(, t2 )+_t ( t

4_t 4
G,(t) -

45

_'29t2

C_(t) -
12

Cl'(t) - 2a'a' _-_-1 _3 2,131t
{[ -3( )]e p'' +

C,9 (t) - a,a9 [( )ep,, + __ + ]
2 fl,

C_9(t ) = ct,°t9 t3
12

3

Finally, covariances amongst the other (nonstandard) basis functions are evaluated as

combinations of the standard basis covariances, as given below.

C,2(t) = w,,C,,(t) + w,_C.(t)

C,,(t) = w,_C. (t) + .,,_C. (t)

24



C22 (t) 2 2= w21C.(t) + 2w2.w2,C_,(t) + w2,C_(t)

C29(t) = w2,C,9(t) + w2,G9(t)

2
Gs(t) = wLC.(t ) + 2w,,w,9C59(t) + w89C99(t)

Note that the limiting values for all covarianees as t approaches 0 are all equal to 0. In

some eases, L'H6pital's Rule is employed to verify this.
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APPENDIX B: Uncertainty Analysis

The following equations provide the means of conducting uncertainty

respect to technology, cost, schedule, architecture, and organization.

Uncertainty Analysis for TRL Specification:

_' " " 'G(O- Z,.,',(oZ,_ (O--
c_RLi i=1 j=l Eg/'RLi

_RL_ --t: o It_ _ ltrj(t)-E[rj(t)l]}dt

analyses with

Uncertainty Analysis for Schedule Specification:

--= w,q)_w,(O--
c_ i=1 s=l a

- {[_(t)-E[_(t)]][rj(t)-E[rs(t)]]-Co(t)}
cTt t

Uncertainty Analysis for Cost Specification:

cTer2 _ 1 w_(t) _ wj(t)Cv.(t)+ _wj(t)Co(t)
cq_'k (t) 2 ,=,.,.k s:I,./,_ j=,

Uncertainty Analysis for Organization Specification:

n

o-'=Zw,(OZw:(Oo,:(OG(O
i=1 d=l

80- 2
-- - wk (t)w (t)C_ (t)
O0_(t)

Uncertainty Analysis for Architecture:

,_, . . _G(t)
-_-= Z w,(')Zwj(t)

i=l 3'=1

-G.(t)
8A
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APPENDIX C: Marginal Timeframe Analysis

The following equations provide the process of performing marginal timeframe analysis

over a partial period of the schedule duration.

n

o-2(t,,t2) = _w,(t)_wj(t)Oo(t)Co,(t,,tz)
i=l j:i

l 2

f {[r, (t) - E[r, (t)][rj (t) - E[5 (t)]]}dt

co.(t,,t : ,,
12

t]

C_(q,tz) - t z Co(t2) t, Co.(t, )
t z - t_ t 2 - t_
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APPENDIX D: Programmatic Benchmarking

The following equations provide the null and alternate hypotheses in terms of the

normalized risk of the system and benchmarks, respectively. Also provided is the

mechanism for determining the Type I and II error rates.

O"
R=--

2,

Ho'R s < ._

HI'R s > R_

a = P(Rs > R.IRs < RB)

fl = P(Rs <- -_BI'Rs > R_)

p=l-e k

^ -P P-Po
3 = P{P" : > = .}

0". O"

,_ p{./3,-p < P-Po: -- -," }

0-. O-
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